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BALANCED BINARY SEARCH TREES 

Binary Search Tree Review… 

• data structures designed for O(logN) search 

• consist of nodes containing item (incl. key) and two 

links 

• can be viewed as recursive data structure (subtrees) 

• have overall ordering (values(L) < root < values(R)) 

• insert new nodes as leaves, delete from anywhere 

• have structure determined by insertion 

order (worst: O(N) e.g. when items in sorted order) 

• operations: insert, delete, search, rotate, rebalance, 

... 

 



BALANCED BINARY SEARCH TREES 

Goal: build binary search trees which have 

• minimum depth ⇒ minimum worst case search cost (O (log N)) 

 

Perfectly balanced tree with N nodes has:  

• abs(size(LeftSubtree) - size(RightSubtree)) < 2, for every node 

• abs(height(leftsubtree) -height(rightSubtree)| < 2 for every 

node i.e. depth of log2N ⇒ worst case search O(logN) 

 

Effects of order of insertion on BST shape: 

• best case: keys inserted in pre-order  

(median key first, median of lower half, median of upper half, 

etc.) 

• worst case: keys inserted in ascending/descending order 

• average case: keys inserted in random order ⇒ O(log2N) 

 

 

 

 



NEW BINARY SEARCH TREE 

// Item, Key, Node, Link, Tree types as before  

#define key(it) ((it).key)  

// operations on keys  

#define cmp(k1,k2) ((k1) - (k2)) 

#define lt(k1,k2) (cmp(k1,k2) < 0)  

#define eq(k1,k2) (cmp(k1,k2) == 0)  

#define gt(k1,k2) (cmp(k1,k2) > 0)  

// standard tree operations  

Tree newTree(); 

Tree insert(Tree, Item);  

Tree delete(Tree, Key);  

int find(Tree, Key);   

void dropTree(Tree);  

void showTree(Tree);  

int depth(Tree);  

int nnodes(Tree); // aka size() 



NEW BINARY SEARCH TREE ADT (CONT) 

// functions to assist with balancing tree 

// internal to ADT 

Link rotateR(Link);  

Link rotateL(Link);  

Tree rebalance(Tree);  

Item *get_ith(Tree, int);  

Tree partition(Tree, int);  

Tree insertAtRoot(Tree, Item);  

Tree insertRandom(Tree, Item); 



GENERATING VALUES IN PREFIX ORDER 

void mkprefix(int *v, int N, int lo, int hi) 

 

One way of ensuring balance ... insert values in 

"correct" order. 

Write a function that generates prefix order sequence 

•generates values in range lo .. hi 

•first is mid-point, second is mid of lower-half, ... 

•store values in array v[0..N-1] 

Function interface: 

 

 

 

   e.g.   lo..hi = 1..7   ⇒   4 2 1 3 6 5 7 



TREELAB 

n N Ord Seed = make a new tree  

i N = insert N into tree  

I N = insert N into tree at root  

d N = delete N from tree  

f N = search for N in tree  

g I = get the i'th element in tree  

p I = partition tree around i'th element  

R = rotate tree right around root  

L = rotate tree left around root  

q = quit 

A shell for manipulating binary search trees 

• command interpreter (tlab.c) + Tree ADT (Tree.[ch]) 

Commands: 



TREELAB (CONT) 

Usage:   ./tlab #Nodes Order Seed 

 

Possible orders to supply values for insertion 

• A = ascending   (10 .. N+9), 

• D = descending   (N+9 .. 10) 

• P = prefix ... builds balanced tree 

• R = random ... could do anything ... 

 

Seed = starting value for pseudo-random number 

generator 



APPROACH 1: GLOBAL REBALANCING 

• Insert nodes normally as leaves (as for simple BST) 

• Periodically, rebalance the whole tree 

• Question: how frequently/when 

 
Tree NewTreeInsert(Tree t, Item it)  

{ t = TreeInsert(t,it);  

  // e.g. after every 20 insertions  

  if (size(t) % 20 == 0)  

            t = rebalance(t);  

  return t;  

} 

 

 



GLOBAL REBALANCING 

Question:  How to rebalance a BST ? 

- The best key to have at the root of a tree is the median 

- Will partition all the keys equally into left and right 

sub-trees 

 

 

 



GLOBAL REBALANCING 

Implementation of re-balance: 

Tree rebalance(Tree t) { 

   if (t == NULL) return NULL;  

   int n = count(t);  

   if (n < 3) return t;  

// move median node to the root by partitioning on  

size/2 

   t = partition(t, n/2);  

// now rebalance each sub-tree  

   t->left = rebalance(t->left);  

   t->right = rebalance(t->right);  

   return t;  

} 



GLOBAL REBALANCING 

typedef struct Node {  

   Item value;  

   int nnodes;               // #nodes in my tree  

  Link left, right;        // subtrees  

} Node; 

  

Link newNode(Item it) {  

Link new = malloc(sizeof(Node));  

assert(new != NULL);  

new->value = it;  

new->nnodes = 1;  

new->left = new->right = NULL;  

return new;  

} 

To do this efficiently requires changes to Tree data 
structure and operations. 



GLOBAL REBALANCING 

New functions for determining tree size: 

// efficient; use outside Tree-changing functions 

 int size(Tree t) {  

       return (t == NULL) ? 0 : t->nnodes;  

} 

 

// inefficient; use while making changes to Tree  

int count(Tree t) {  

    if (t == NULL) return 0;  

    else return 1 + count(t->left) + count(t->right); 

} 



GLOBAL REBALANCING 

New operations on trees: 

 get_ith(): select i'th element from inorder sequence of keys 

 partition(): re-arrange tree so that i'th element becomes  root 

For tree with N nodes, indexes are 0 .. N-1 



GLOBAL REBALANCING 

Implementation of selection operation: 

// select i'th Item in key order 

Item *get_ith(Tree t, int i)  

{  

    if (t == NULL) return NULL;  

    assert(0 <= i && i < size(t));  

    int n = size(t->left);   // #nodes to left of root  

    if (i < n) return get_ith(t->left, i);  

    if (i > n) return get_ith(t->right, i-n-1);  

    return &(t->item);  

} 

Note:  size(t) = n,   size(t->left) = m,   size(t->right) = n-m-1 

Note: "-1" in size(t->right) is to exclude root of t 



GLOBAL REBALANCING 
Implementation of partition operation: 

// move i'th item of t to root 

Tree partition(Tree t, int i)  

{  

    if (t == NULL) return NULL;  

    assert(0 <= i && i < size(t));  

    int n = size(t->left);  

    if (i < n) {  

            t->left = partition(t->left, i);  

            t = rotateR(t);   

    }  

    else if (i > n) {  

            t->right = partition(t->right, i-n-1);  

            t = rotateL(t);   

    }  

    t->nnodes = count(t); // fix count  

return t;  

} 



ROTATIONS 

Move nodes up to the root using rotations 

• Left rotation 

- makes the original root the LEFT sub-child 

of the new root 

• Right rotation 

- Makes the original root the RIGHT sub-child 

of the new root 



MOVING NODE TO ROOT USING ROTATION 

Move node n2 up 

• t1< n2<t2< n1<t3 

Rotation leaves the relative order of the nodes intact! 

We can use it to successively move a node up to the root  



MOVING NODE TO ROOT USING ROTATIONS 

Link rotateR(Link n1) {  

    if (n1 == NULL) return NULL;  

    Link n2 = n1->left;  

    if (n2 == NULL) return n1;  

    n1->left = n2->right;  

    n2->right = n1;  

    return n2; 

 }  

Left rotation is similar with n1/n2 and left/right switched 



GLOBAL REBALANCING 

Partition and rotate to move the ith  node to the root of 

the tree 



GLOBAL REBALANCING 

 

 Analysis of rebalancing:  visits every node => O(N) cost implies 

not feasible to rebalance after each insertion 

 When to rebalance? … Some possiblities: 

 after every k insertions 

 rebalance whenever “imbalance” exceeds some threshold 

 Rebalance every time – too expensive 

 Either way, we tolerate worse search performance for periods 

of time.  

 Does it solve the problem for dynamic trees? ... Not really.  



APPROACH 2: LOCAL REBALANCING 

 

Global approach walks through every node of the tree and 

balances its sub-trees 

 perfectly balanced tree 

Local approach  

 do incremental operations to improve the balance of the over-

all tree 

 Tree may not end up perfectly balanced  

 

 

 



LOCAL APPROACHES TO REBALANCING 

Randomisation 

 the worst case for binary search trees occurs relatively 

frequently (partially sorted input) 

 use random decision making to dramatically reduce chance of 

worst case scenario 

Amortisation  

 do more work at insertion to make search faster 

Optimisation  

 maintain structural information to be able to provide 

performance guarantees 

 implement all operations with performance bounds 

 

 



1. RANDOMISED BST INSERTION 

Tree ADT has no control over order that keys are 

supplied 

To minimise the probability of ending up with a 

degenerate tree, we make a randomised decision at 

which level to insert a node. 

At each level, the probability depends on the size of the 

remaining tree 

• Do normal leaf insertion most of the time 

• Randomly do insertion at root 

In the hope that this randomness helps to balance the 

tree ... 

 



RANDOMISED BST INSERTION 

Approach: normally do leaf insert, randomly do root 

insert. 

Tree insertRandom(Tree t, Item it) {  

          if (t == NULL) return newNode(it);  

// 25% chance of doing root insert  

          if (rand()%100 < 25)  

                      return insertAtRoot(t,it);  

          else  

                      return insert(t, it);  

} 

Alternatives:  if (nnodes(t)%5 == 0), etc. 



INSERTION AT ROOT 

Previous insertion into BSTs  

 inserted as leaves. 

New approach:  

insert new value at root. 

method for inserting at root (recursive): 

 base case: 

- tree is empty; make new node and make it root 

 recursive case: 

- insert new node as root of L/R subtree 

- lift new node to root by R/L rotation 

 



INSERTION AT ROOT 



INSERTION AT ROOT (CONT) 

Tree insertAtRoot(Tree t, Item it) {  

    if (t == NULL) return newNode(item);  

    int diff = cmp(key(it), key(t->value));  

    if (diff == 0) t->value = it;  

    else if (diff < 0)  

    {     t->left = insertAtRoot(t->left, it);  

          t = rotateR(t);  

     }   

     else if (diff > 0) {  

          t->right = insertAtRoot(t->right, it);  

          t = rotateL(t);  

     }  

return t;  

} 

 

 



INSERTION AT ROOT – 

Base Case: Tree is empty 

Recursive Case:   

1. Insert it into root of appropriate sub-tree 

2. Lift root of sub-tree by rotation 



INSERTION AT ROOT  

What is the work complexity? 

 Same as insertion at leaf, but extra work done for each 

insertion – O(N) 

Recently inserted items are close to the root 

 access time less for items inserted most recently 

 depending on the application, this might be a significant 

application 

Properties 

 building a randomised BST is equivalent to building a 

standard BST from a random initial permutation of keys 

 worst, best and average case performance are the same 

as for standard BST, but no penalty if initial sequence is 

ordered or partially ordered 

 



2. AMORTISATION:  SPLAY TREES 

Idea: use root insertion, but with a slight twist: 

whenever a node has to move either two successive left 

or two right rotations to move up, move the parent first 

Splay-tree insertion modifies insertion-at-root method: 

- by considering parent-child-grandchild orientation (three-

level-analysis) 

- by performing double-rotations based on p-c-g orientation 

Splay-tree rotations also do rotation-in-search: 

• The node of the most recently searched for item (or last 

node in path of a dead end search) becomes the new 

root 

• can improve balance of tree, but makes search more 

expensive 

 

 



SPLAY TREES 

Cases for splay tree double-rotations: 

- case 1: grandchild is left-child of left-child 

- case 2: grandchild is right-child of left-child 

- case 3: grandchild is left-child of right-child 

- case 4: grandchild is right-child of right-child 

 

 



Double Rotation: Left of Left 

- Rotate at y’s grandparent z first 

- Then rotate a parent x 

 

 

SPLAY TREES 



SPLAY TREES 

- Double Rotation: Right of Left 

- First rotate at x’s parent, y, then at x’s parent z 

 



ROOT INSERTION VERSUS SPLAY TREE INSERTION 

Worst case example for normal root insertion  

-  move smallest item up a degenerated tree using normal right 

rotations from leaf.  



ROOT INSERTION VERSUS SPLAY TREE INSERTION 

Worst Case for splay insertion: 

- O(N) steps for insertion : inserting node 1 in this worst case 

degenerate tree 

- Splay insertion improves balance of tree : move smallest item up 

a degenerated tree using right rotation of grand parent node, 

followed by right rotation of parent node 

 



ROOT INSERTION VERSUS SPLAY TREE INSERTION 

Another worst case scenario for splay insertion :  

- Inserting 12 into this degenerate tree.  

- There would be no grandparent, relationship between 11 and 12 as 

11 has no right child. So we just insert 12 as the parent and make 11 

the left child. (The same as if we inserted 12 then did a rotate left at 

12’s parent). 

 



WORK COMPLEXITY OF SPLAY TREE OPERATIONS 

Insertion 

• worst case (wrt insertion work): item is inserted at the end of a 

degenerate tree 

- O(n) steps necessary, but tree height reduced by a factor of 

two 

• worst case (wrt resulting tree): item inserted at the root of a 

degenerate tree  

- constant number of steps necessary (O(1) in last example) 

Overall Work Complexity 

• assuming we splay for both insert and search 

- assume N initial inserts, then M searches 

   N log N insert cost, M log N search cost 

• Gives good (amortized) cost overall. But no guarantee for any 

individual operation; worst-case behaviour may still be O(N)  

• It is based on the idea that if you recently used something you'll 

likely need it again soon 

- keeps the most commonly used data near the top  



AVL TREES 
Approach 

• insertion (at leaves) may cause imbalance 

• repair balance as soon as we notice imbalance 

• repairs done locally, not by overall tree restructure 

 

A tree is unbalanced when: abs(depth(left)-depth(right)) > 1 

This can be repaired by a single rotation: 

 

• if left subtree too deep, rotate right 

• if right subtree too deep, rotate left 

 

Problem: determining height/depth of subtrees may be expensive. 



AVL TREES 
Implementation of AVL Insertion 

Tree insertAVL(Tree t, Item it)  

     { if (t == NULL) return newNode(it);  

        int diff = cmp(key(it), key(t->value));  

        if (diff == 0) t->value = it;  

        else if (diff < 0) t->left = insertAVL(t->left, it);  

        else if (diff > 0) t->right = insertAVL(t->right, it);      

         int dL = depth(t->left);  

         int dR = depth(t->right);  

         if ((dL - dR) > 1) t = rotateR(t);  

         else if ((dR - dL) > 1)  

                    t = rotateL(t);  

         return t; } 



AVL TREES 
Function insertAVL() in TreeLab 

• use option A in command-line to perform AVL insertion 

• inefficient function 

 

Why is it inefficient? 

• computes depth() as part of recursion 

• computes depth() multiple times on same branch 

• depth() itself requires multiple recursion 

 

Could assist by storing height of subtree in each node 



AVL TREES 
Analysis of AVL Trees 

• trees are height-balanced; sub-tree depths differ by +/-1 

• average/worst-case search performance of O(logN) 

• require extra data to be stored in each node (efficiency) 

• may not be weight-balanced; sub-tree sizes may differ 



2-3-4 TREES 

Next, 2-3-4 Trees… 


